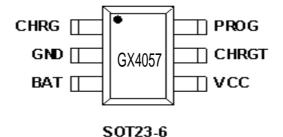


一、概述

GX4057 是一款管理锂电池充电功能的完整系统集成电路,它能提供快速充电,并最大化地延长电池寿命。 GX4057 监测电池的情况,如果电池电压低于 2.9V 时,决定是否需要预充电。预充电电流可通过外部电阻在 7.5mA 到 120mA 的任意范围内设置。预充电状态会使电池保持良好状况,并延长电池寿命。一旦电池电压达 2.9V,GX4057 将自动转换为恒流(CC)充电周期。内部电流的设定为预充电时电流的 6 倍以上。恒流循环功能将需要充电的时间降到最短,当电池接近完全饱和,大概在 4.15V 左右,GX4057 将自动转换为恒压(CV)的充电周期。在恒压充电周期,充电电流将会减小使电池逐渐饱和而没有过饱和的危险,这是必要的,因为锂电池不能过饱和 50mV,否则就有爆炸的危险。GX4057 确保锂电充满,但不会进入过饱和状态。在充电完成后,GX4057 将进入关闭模式,降低内部耗电量到小于 35uA。这一特点使 GX4057 能够应用到便携式设备的内部,并在设备不工作时几乎不消耗任何能量。

GX4057 也提供了片内温度保护。当温度达到预定的水平且电池面临过热危险, GX4057 将减少充电电流使温度逐渐降低。为电池充电提供适当的保护。

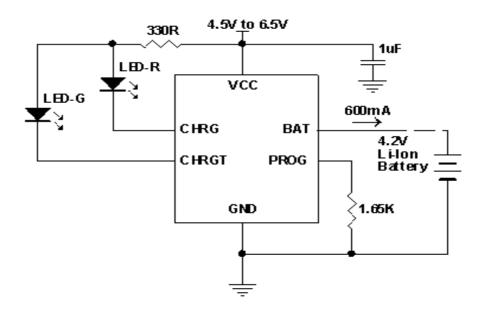
二、特点


- ▶ 充电电流最大可调整到800mA。
- ➤ 不需要外接MOSFET、电阻或阻塞二极管。
- ▶ 带热保护的恒流/恒压操作最大限度保证充电速度 而无过热的危险。
- ▶ 直接从USB接口为单节锂电池充电。
- ▶ VBAT端输出预设充电电压4.2V, ±1%的精度。

三、 产品应用

▶ 手机、MP3、掌上电脑:

- ▶ 集成完整的充电状态显示功能,简化外围电路。
- ➤ 2.9V的涓流充电门限。
- ▶ 关断模式下供电电流为35uA。
- ▶ 具有过热保护功能。
- ▶ 可抗2KV以上ESD。
- ➤ 采用 SOT23-6 封装形式


四、 管脚图及功能说明

名称	功能说明	名称	功能说明
CHRG	充电指示脚	PROG	充电电流预设脚
GND	地	CHRGT	充电完成指示脚
BAT	充电电流输出脚	VCC	电源脚

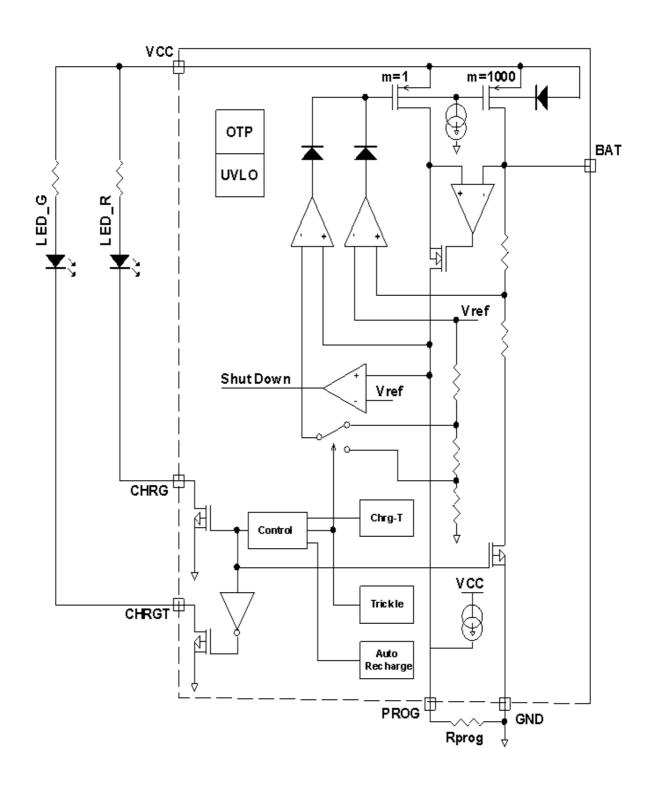
五、 应用电路图

六、 绝对最大额定值 (1)

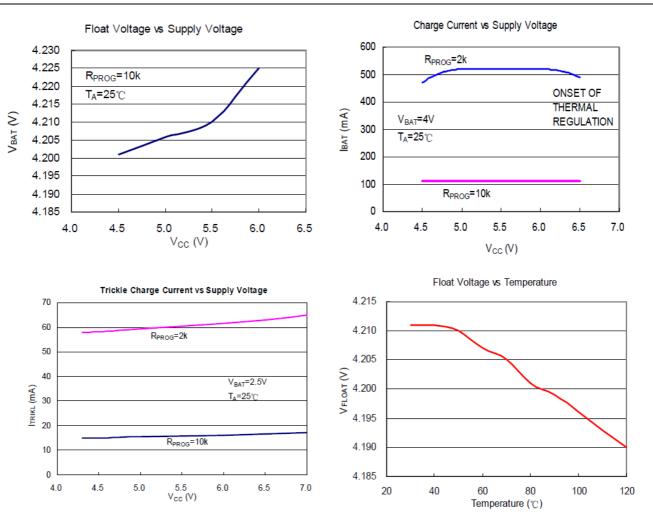
参数	符号	额定值	单位
输入电源电压	V _{CC}	7	V
输入电压	V _{IN}	-0.3 to 7	V
PROG 电压	V_{PROG}	VCC+0.3	V
BAT 电压	V_{BAT}	7	V
CHRG 电压	V _{CHRG}	7	V
BAT 短路		Continuous 连续	
热阻	θ ЈА	75 (DIP/SOP8)	°C/W
BAT 电流	I_{BAT}	800	mA
PROG 电流	I _{PROG}	800	uA
最高结温	T_J	125	°C
内部结温	T _J	-40 to 85	$^{\circ}$ C
贮藏温度	Ts	-65 to 125	°C
焊接温度(不超过10sec)		300	°C

七、 **电气特性** (V_{IN}=5V; T_J=25℃; 除特殊说明.)

符号	参数	条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.25		6.5	V
I_{CC}	芯片消耗电流	充电模式 ⁽³⁾ , R _{PROG} = 10k		110	500	uA
		低功耗模式 (充电完成)		70		uA
		关断模式(R_{PROG} Not Connected, $V_{CC} < V_{BAT}$, or $V_{CC} < V_{UV}$)		35	50	uA
V_{FLOAT}	预设充饱电压	V _{CC} =5V	4.158	4.2	4.242	V
	BAT 电流 充电电流	R _{PROG} = 10k, Current Mode	90	100	130	mA
${ m I}_{ m BAT}$		R _{PROG} = 2k, Current Mode		500		mA
		低功耗模式, VBAT = 4.2V	0	+/-1	+/-5	uA
		关断模式 (R _{PROG} Not Connected)		+/-0.5	+/-5	uA
		睡眠模式, V _{CC} = 0V		+/-1	+/-5	uA
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 10k$		15		mA
V_{TRIKL}	涓流充电阈值电压	R _{PROG} = 10k, V _{BAT} Rising	2.8	2.9	3.0	V
V_{UV}	VCC欠电压锁定阈值	From VCC Low to High		3.4		V
V _{UVHYS}	VCC欠压锁定滞后			100		mV
$V_{ m MSD}$	手动关断阈值电压	PROG Pin 上升		1.25		V
		PROG Pin 下降		1.2		V
$ m V_{ASD}$	VCC充电阈值电压	VCC 从低到高		100		mV
		VCC 从高到低		30		mV
V _{PROG}	充电基准电压	R _{PROG} = 10k, Current Mode	0.9	1.03	1.1	V
$\triangle V_{RECHRG}$	自动重充迟滞电压	V _{FLOAT} - V _{RECHRG}		150		mV
T_{LIM}	过温关断点			120		$^{\circ}$
tss	软启动时间	$IBAT = 0$ to $1000V/R_{PROG}$		100		us
t _{TERM}	恒流充电到涓流充电 的转换时间			1000		us
I_{PROG}	PROG上拉电流			1		uA

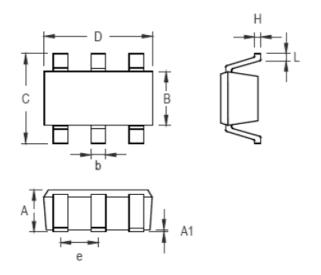

注: 1、超出最大工作范围可能会损坏芯片。

^{2、}芯片不建议工作在极限参数的状态下。



- 3、芯片的工作电流包括PROG Pin外面电阻消耗的电流(约100uA),但不包括芯片通过BAT Pin给芯片充电的电流(约100mA)。
 - 4、充电终止电流一般是设定充电电流的0.1倍。

八、 功能方框图



九、 封装尺寸图

SOT23-6

Sumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	