

GX8111

高性能电流模式 PWM 控制器 GX8111

概述

GX8111 是一个高性能电流模式 PWM 控制器, 内置 600V/4A 功率 MOSFET。在 85V-265V 的宽电压 范围内提供高达 18W 的输出功率,峰值输出功率更可 高达 24W。

GX8111 低至 10uA 的启动电流,以及在输出功率较小时自动进入绿色模式,从而实现了在 220V 输入电压时小于 100mW 的待机空耗。并且使进入 20KHz 以下的音频区的范围最小化,以保证在正常工作状态无异音。另外 GX8111 集成频率抖动功能,可以有效简化

EMI 设计。

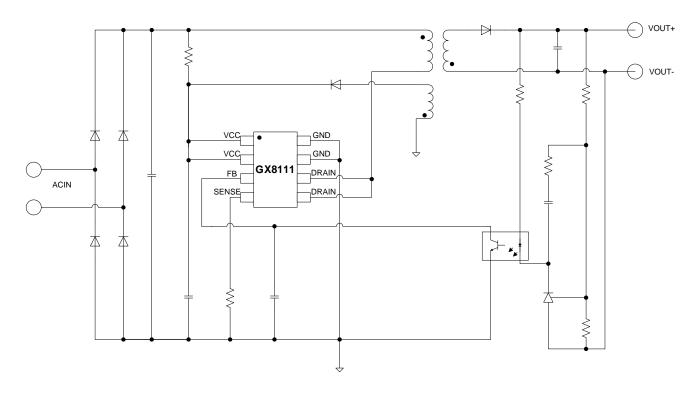
GX8111 拥有完善的保护功能,包括过流保护

(OCP),过载保护(OLP),欠压锁定(UVLO),过压保护(OVP)等,以确保系统可靠的工作。

应用场合

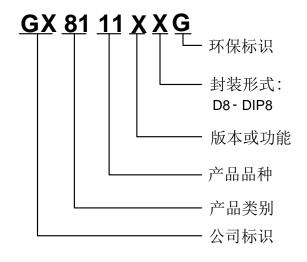
- 适配器
- 机顶盒
- 开放式电源

特点


- 内置 600V/4A 功率 MOSFET
- 超低启动电流
- 软启动功能
- 降噪功能
- 轻载进入绿色模式
- 频率抖动功能
- 过功率补偿
- 前沿消隐
- 斜坡补偿
- 完善的保护: OCP, OLP, UVLO, OVP

封装形式

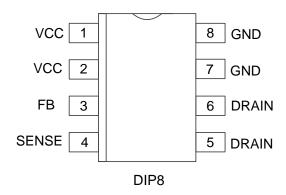
• 8-pin DIP8



典型应用图

选购指南

1.产品型号说明



产品型号	产品说明		
GX8111AD8G	封装形式: DIP8		

V05 www.gxjp-bdt.com Page 2 of 8


产品脚位图

脚位功能说明

PIN 脚位	符号名	功能说明	
1;2	VCC	电源	
3	FB	反馈	
4	SENSE	电流检测	
5、6	DRAIN	高压功率 MOS 的漏极	
7、8	GND	地	

芯片功能示意图

V05 www.gxjp-bdt.com Page 3 of 8

极限参数

参数	极限值	单位
电源电压: VCC	30	V
DRAIN电压	-0.3 ~ 600	V
VCC钳位电流	10	mA
FB, SENSE	-0.3 ~ 7	V
工作温度范围	-20~150	°C
储存温度范围	- 55∼150	°C
焊接温度和时间	+260(10秒)	°C

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

推荐工作条件

参数	范围	单位
VCC 电源电压	10 to 30	V
工作温度	-20 to 85	°C

电气参数 (除非特殊说明,测试条件为: T_A = 25℃,VCC=16V)

符号	参数	条件	Min	Тур.	Max	Unit	
电源(VCC)							
I _{Startup}	启动电流	VCC= UVLO _{OFF} -1V,流入 VCC 的电流	-	2	20	μΑ	
I _{Operation}	工作电流	V _{FB} =3V	-	1.8	3	mΑ	
UVLO _{ON}	VCC 欠压锁定电压		8	9	10	V	
UVLO _{OFF}	VCC 欠压锁定解锁电压		13	14	15.5	V	
VCC_Clamp	VCC 嵌位电压	$I_{VCC} = 10 \text{ mA}$	30	32	34	V	
OVP _{ON}	VCC 过压保护电压		24	26	28	V	
反馈 (FB)							
AV _{SENSE}	PWM 输入增益 ΔV _{FB} /ΔV _{SENSE}		-	2	-	V/V	
Maximum duty cycle	最大占空比	VCC=16V , V_{FB} =3V , V_{CS} =0V	75	80	85	%	
V _{FB_Open}	FB开路电压		3.9	4.2	-	V	
I _{FB_Short}	FB 短路电流	FB 对 GND 短路时流出 FB 的电流	-	0.3	1	mA	
V _{REF_GREEN}	进入绿色模式时的 FB 电压		-	1.4		V	
V _{REF_BURST_H}	解除突发模式时的 FB 电压		-	0.675	ı	V	
V _{REF_BURST_L}	进入突发模式时的 FB 电压		-	0.575	-	V	

V05 <u>www.gxjp-bdt.com</u> Page 4 of 8

GX8111

V _{TH_PL}	过功率保护 FB 电压			-	3.7	-	V	
T _{D_PL}	过功率保护反跳时间			80	88	96	mS	
电流检测 (Ser	电流检测 (Sense)							
T_ soft start	软启动时间			-	4	-	mS	
T_blanking	前沿消隐时间			-	220	-	nS	
T _{D_OC}	检测到控制的延迟时间			-	120	-	nS	
V _{TH_OC}	最大电流限制比较电压	FB=3.3V		-	0.875	-	V	
振荡器								
Fosc	工作频率	VCC=16V,FB=3V,CS=0V		60	65	70	KHz	
Δf_OSC	频率抖动幅度			-	±4	-	%	
F_shuffling	频率抖动周期				32	-	Hz	
F_Burst	突发模式基础频率			-	22	-	KHz	
高压功率 MOSFET (DRAIN)								
BVdss	源漏耐压	Vgs=0		600	-	-	V	
Davis	源漏之间导通电阻	V _{GS} =10V,			0.0	Ω		
Ron		Id=1.0A		_	-	3.3	72	
I _D	标称工作电流			-	4	-	Α	

功能描述

GX8111 是一个高性能电流模式 PWM 控制器,内置 600V/4A 功率 MOSFET。用在小于 18W 的离线式反激拓扑的开关电源上的控制芯片。

启动过程

启动过程中,因为芯片设计的超低启动电流,VCC 通过一大阻值电阻充电,使损耗降到最低。当 VCC 升到 14V时,芯片内部模块逻辑开始工作,驱动高压 MOS 开关。一个 4mS 的软启动设计可以有效降低启动过程中 MOS 的开关应力。正常工作状态,辅助绕组上的电压会随着输出电压的升高而升高,到一定程度后开始给芯片供电。如果 VCC电压低于 9V,芯片将自动关闭,重新进入启动过程。

频率抖动

GX8111 集成频率抖动功能,正常工作状态,芯片工作频率围绕中心频率在±4%的范围内随机变化,有效改善系统的 EMI 特性,简化系统的设计。

电流检测以及前沿消隐

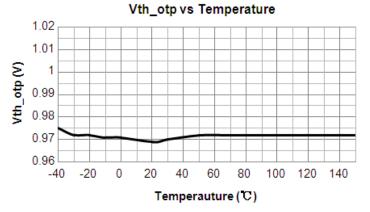
GX8111 进行逐周期电流检测,开关电流经过一个检测电阻被 SENSE 脚检测到,到达一定阈值时控制开关关闭。为避免功率管开启时产生的尖峰造成误触发,有必要做一个前沿消隐时间,这里是 220nS。在这个时间里,开关不能被关闭。

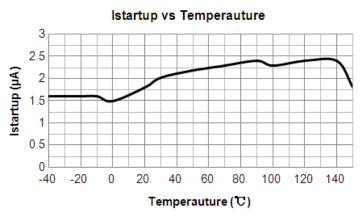
V05 www.gxjp-bdt.com Page 5 of 8

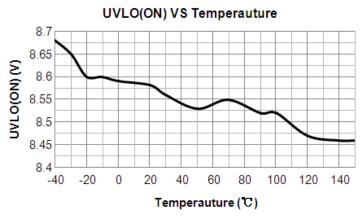
绿色模式和突发模式

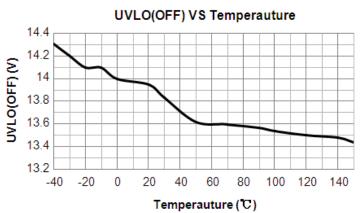
在空载或者轻载时,大部分能量损耗在功率开关管,而这损耗是和开关频率成正比的,因此低的开关频率可以有效降低损耗。

GX8111 设计开关频率在空载和轻载时调整,在空载和轻载时 FB 电压会降低,降到 1.4V 时进入绿色模式,芯片频率随着 FB 电压降低而降低,当 FB 电压进一步降低到 0.57V 时,芯片进入突发模式,及芯片驱动关断,直到 FB 升到 0.67V 时恢复开关。因此可以有效降低系统待机功耗。另外绿色模式的最低频率在 22KHz,以保证在任何负载情况下没有音频噪声。

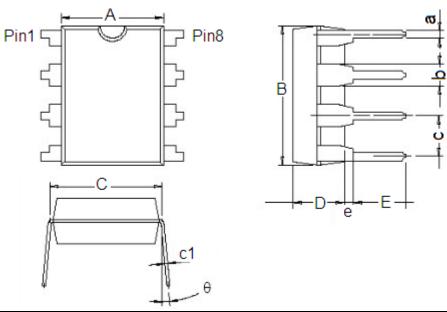

保护功能


GX8111 拥有完善的保护功能,以确保系统可靠的工作。包括逐周期过流保护(OCP),过载保护(OLP),VCC


欠压锁定(UVLO), VCC过压保护(OVP)等。


当 GX8111作在超负载状态时,输出电压无法到达额定电压,FB 电压超过内部设置的功率限制阈值电压达到 80mS 时控制电路关闭开关管,辅助绕组无法继续供电,VCC 开始下降,直到降低到 9V,芯片重新启动。

典型性能参数



V05 www.gxjp-bdt.com Page 6 of 8

封装信息

● 封装类型: DIP8

参数	尺寸 (mm)		尺寸 (Inch)			
少 数	最小值	最大值	最小值	最大值		
А	6.200	6.600	0.244	0.260		
В	9.000	9.400	0.354	0.370		
С	7.620	(Typ.)	0.300(Typ.)			
D	3.200	3.600	0.126	0.142		
E	3.000	3.600	0.118	0.142		
а	0.360	0.560	0.014	0.022		
b	1.524(Typ.)		0.060(Typ.)			
С	2.54(Typ.)		4(Typ.) 0.100(Typ.)			
c1	0.204	0.360	0.008	0.014		
е	0.510	0.510(Min)		(Min)		
θ	00	15 ⁰	00	15 ⁰		

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外, 应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。

V05 www.gxjp-bdt.com Page 8 of 8